$$\vec{\mathbf{F}}_{B} = q\vec{\mathbf{v}} \times \vec{\mathbf{B}}$$

Units of magnetic field: Tesla

1 T = 10000 Gauss

Surface of earth: 0.5×10⁻⁴ T

Bar magnet: 1.5 T

Strong superconducting magnet: 30 T

The segment of wire (total length = 6R) is formed into the shape shown and carries a current *I*. What is the magnitude of the resulting magnetic field at the point P?

a. $\frac{\mu_0 I}{8R}$

b . $\frac{\mu_0 I}{2R}$

 $\mathbf{C} \cdot \frac{\mu_0 I}{4R}$

d. $\frac{\mu_0 I}{2\pi R}$

 $e^{\frac{\mu_0\pi}{8R}I}$

The segment of wire (total length = 6R) is formed into the shape shown and carries a current I. What is the magnitude of the resulting magnetic field at the point P?

Question 1: Equal currents of magnitude *I* travel into the page in wires M and N. Eight directions are indicated by letters A through H.

The direction of the magnetic field at point P is

- a. B.
- b. C.
- c. D.
- d. E.
- e. F.

Approximate solenoid as bunch of separate loops

Magnetic field at the center of the solenoid

L: length of solenoid n: coil density (#/m) a: radius of the coil

Looks like integration is required again, but how?

Current through each coil: I Number of coils in dz: ndz

$$dB = n \frac{\mu_0 I}{2} \frac{a^2 dz}{\left(a^2 + z^2\right)^{\frac{3}{2}}}$$

$$B = \int_{-L/2}^{L/2} \frac{\mu_0 nI}{2} \frac{a^2 dz}{\left(a^2 + z^2\right)^{\frac{3}{2}}}$$

$$B = \frac{\mu_0 n I a^2}{2} \left[\frac{L/2}{a^2 \left(a^2 + \frac{L^2}{4}\right)^{\frac{1}{2}}} - \frac{-L/2}{a^2 \left(a^2 + \frac{L^2}{4}\right)^{\frac{1}{2}}} \right]$$

Current through each coil: I Number of coils in dz: ndz

$$B = \frac{\mu_0 n I a^2}{2} \left[\frac{L/2}{a^2 \left(a^2 + \frac{L^2}{4}\right)^{\frac{1}{2}}} - \frac{-L/2}{a^2 \left(a^2 + \frac{L^2}{4}\right)^{\frac{1}{2}}} \right]$$

$$B = \frac{\mu_0 n I a^2}{2} \frac{L}{a^2 \left(a^2 + \frac{L^2}{4}\right)^{\frac{1}{2}}}$$

If L>>a

$$B \sim \frac{\mu_0 n I a^2}{2} \frac{L}{a^2 \left(\frac{L^2}{4}\right)^{\frac{1}{2}}} = \frac{\mu_0 n I}{2} \frac{L}{L/2} = \mu_0 n I$$

What about the field at the very end?

$$B = \int_0^L \frac{\mu_0 nI}{2} \frac{a^2 dz}{\left(a^2 + z^2\right)^{\frac{3}{2}}}$$

$$B = \frac{\mu_0 n I a^2}{2} \left[\frac{L}{a^2 (a^2 + L^2)^{\frac{1}{2}}} - \frac{0}{a^2 (a^2)^{\frac{1}{2}}} \right]$$

$$B = \frac{\mu_0 n I a^2}{2} \frac{L}{a^2 (a^2 + L^2)^{1/2}}$$

If L>>a

$$B \sim \frac{\mu_0 n I a^2}{2} \frac{L}{a^2 (L^2)^{\frac{1}{2}}} = \frac{\mu_0 n I}{2} \frac{L}{L} = \frac{\mu_0 n I}{2}$$

∞

Integral evaluated around any closed path where I is the total current passing through any surface defined by the path

Example 1: Inside and outside of a wire

Example 2: Solenoid

Magnetic Flux

$$\Phi_B = \int \vec{B} \cdot d\vec{A}$$

From last Thursday: Torque on current loop in magnetic field

Magnetic field applies torque on magnetic moment

Example: Torque on magnetic moment

Clicker question #3: Which way will the magnetic field try to orient the moment?

- a. Clockwise
- b. Counter clockwise
- c. Out of the board
- d. Into the board